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Abstract

The idea of accelerating an application’s execution speed by running it on the

GPU is GPU acceleration. For their applications, researchers and developers have

always tried to attain greater speed and GPU acceleration is a very common way

of doing so. For highly graphical applications using powerful dedicated GPUs, this

has been achieved for a long time. Researchers, however, have been increasingly

interested in using GPU acceleration for regular applications. Furthermore, it

has been observed in the literature, even though the application is well suited for

parallelism it is not guaranteed to run faster on the GPU. Therefore the purpose of

this thesis is to examine the performance of OpenCL applications by executing each

application on different architecture to find out which application is GPU suitable

and which one is CPU suitable. After executing the OpenCL application on CPU-

GPU with different input sizes compare the execution time of both architecture

and find out which software feature affecting the performance. Some application

like 2DCONV, 3DCONV, and FDTD-2D execution is fast on GPU as compare to

CPU for all input size in the same way ATAX application execution is fast on CPU

than GPU these applications. There are some applications like 2MM, 3MM, and

GEMM which execute fast on GPU for small and large input size but some middle

input size CPU perform better than GPU, in the same way, some applications like

BICG, GESUMV, MVT, Covariance, and Correlation which executes fast on GPU

for small input size but when input size increase CPU become fast as compared

to GPU.
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Chapter 1

Introduction

Engineers have often sought to create computers fast to solve more complicated

problems the way to do this has traditionally been to increase the central process-

ing unit (CPU) clock speed. Due to the power wall, instruction-level parallelism

(running separate instructions in parallel), and memory wall, however, the clock

speed has more or less stopped increasing. The power wall means that the fre-

quency of the processor clock can’t be increased because it produces too much

heat. The ”ILP wall” means that, due to control and data dependency, you can’t

execute more than 3-4 parallel instructions on the same processor. The ”memory

wall” suggests that the memory access speed is lagging enough to impose a pro-

cessor speed limit [1].

As a result, the focus has changed from increasing the speed of single-core to using

parallelization through programming. Parallelization enables a multi-core proces-

sor unit to execute several tasks in parallel, ensuring quick execution. Now a days

in most computers these days have some type of graphics processing units (GPU).

In computer GPUs (Graphics processing units) were developed.

In the last 20 years or so, GPUs have become popular. For high-performance

general-purpose computing, like Processing of video, images medical, video, and

processing images.Until now, however, GPUs combined with high performance

and low costs, have been used to improve computational programmability.

It has been observed in recent years that the performance capabilities of the GPU

1
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have, in some cases, overcome those of the CPU. Which in turn, inspired the

creation of the graphical processing unit for general purpose (GPGPU) [2]. This

has not only led to the use of the GPU in graphical applications but also led to

the use of GPU for other applications like scientific calculations, linear algebra,

data mining, and convolutions. These trends have led to a boom in the design of

graphical computing. Now new product lines were introduced by manufacturers

specifically for scientific measurements.

Now, after these improvements, one is always concerned to see if it is feasible

to use the GPU for calculations of such tasks, to achieve some improved perfor-

mance. Job like processing of an image, medical image, physical modeling, and

linear programming, as well as most applications, are well parallelized based on

GPU [3]. Nevertheless, because of the SIMD (Signal Instruction Multiple Data)

architectures, task-level parallelism is best used in Graphics Processing Unit [4]

and MIMD (Multiple Instruction Multiple Data) architectures, task-level paral-

lelism is best used in general-purpose processors [5].

This work select benchmark programs from a widely used benchmark set to achieve

a more general comparison of the GPU and the CPU. To rule out the probability

that the outcome depends on the author’s programming abilities,rather than the

hardware, the benchmark application is often used. It is important to review their

findings and code to figure out whether or not this particular GPU can be used for

GPU acceleration. In this way a developer can choose a dedicated GPU to speed

up their application.

Also when developing OpenCL programs for dedicated GPUs, it can offer realistic

lessons for what a developer needs to remember. This work going to use Polybench

suits used in [6].

Which consists of multiple algorithms with diffrent nature some of applications

belong to image processing , linear algebra and data mining. In this work going to

run those algorithms on CPU and GPU. Having a better picture of what’s behind

it, In this effects, performance analyzes the result to find, when GPU implemen-

tation has a faster execution time than CPU execution time, and similarly if CPU

execution faster than GPU,what is the reason behind this speedup and what type

of parameters it focuses on i.e. The number of dimension in data, loop unrolling

the size of the problem, number of cores, branch prediction.
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1.1 Purpose

With technological advances, GPUs are largely used in addition to the traditional

CPUs. We can maximize throughput through better utilization of both architec-

tures. In this work we will analyze the characteristics of the program as well as

the architecture on which it is being run to find the factors which contribute to

increasing in GPU and/or CPU utilization.

In this scenario, a performance benefit is defined as: A speedup of execution time

can be found when running the application on the GPU relative to how it had

been run on the CPU. This will also help the programmer in designing applica-

tions suitable for GPU and CPU.

1.2 Scope

In this thesis, different nature of applications are executed on different CPU-GPU

architectures to analyze the performance of different architecture on the behalf of

a software feature.

In comparison, the cores have access to advanced operations such as branch pre-

diction and are quicker and more stable relative to GPU cores in general. This

gives further understanding of applications that are suitable for CPU or GPU and

what needs to be considered when writing an OpenCL application for a specific

architecture.

1.3 Delimitations

The testing of Pollybench suit application implementations will be addressed in

this thesis. This implies that there would not be any implementation from scratch.

Also, to compare the effects of two different architectures on the performance

of application, the study of the execution times will be carried out.The specific

concentration is on the time of execution, not on power usage. We are not discusing

about the power consumption.
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1.4 Problem Statement

it has been observed in the literature [7] [43] [46], even though the application is

well suited for parallelism it is not guaranteed to run faster on the GPU. It means

execution time of an application depends on the other factors as well and how

can you determine whether particular architecture is suitable or not for general

purpose application therefor, OpenCL applications analysis is required to find out

such factors which can affect the performance of application. Therefore, an in-

depth analysis of OpenCL applications is done, to identify which software feature

affect the performance of the application on CPU-GPU architecture.

1.5 Research Question

Based on the research gap stated in the previous section, the following research

questions were formulated in this thesis:

RQ1: What is the better architecture (CPU-GPU) in term of performance for

these applications ?

RQ2: What are the most important factors which affect the execution time of

different OpenCL applications on CPU vs GPU ?



Chapter 2

Backgroud

All theories concerning platforms, OpenCL, parallel algorithms, architectures and

features are discussed in this chapter.

2.1 Parallel Computing

The computational method of executing many instructions in parallel is parallel

computation. This is done by concurrently running several threads on several

cores, rather than running it on one core sequentially as informal programming.

Unlike sequential programming, where the Von Neumann model is the dominant

programming model, there are two different architectures for parallel programming

[8].

2.2 Distributed Memory and Shared Memory

Multiple processors sharing the same memory and a global clock controlling all

memory and processors are part of shared memory architecture.Distributed mem-

ory systems are systems with their memory consisting of several processors. Using

a message-passing protocol over an interconnection network, these processors com-

municate with each other [9]. There are the distributed and shared architectures

5
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of memory, as well as a variety of various distributed and shared structures that

are ideally suited to various problems. In large clusters, the distributed mem-

ory architecture is mostly used when you have multiple processor nodes running

together over an interconnection network.

2.3 The Data Parallel Computing Model

Although there are many types of parallel computing models our focus is on data-

parallel. This is because it is one of the two OpenCL-supported ones that are

suitable for GPU computing [10].

With SIMD execution, data parallelism operates very well because executing the

same operational portion wisely on large collections of independent data revolves

around achieving parallelism. The activities may be performed in parallel because

the data is independent of one another. All programs evaluated in this thesis make

use of parallel algorithm.

2.4 SIMD

Computers with multiple processing elements that perform the same operation

simultaneously on multiple data points are defined as Signal Instruction Multiple

Data (SIMD)[11]. SIMD architectures are made up of a variety of processors that

run in a synchronous manner, with each processor executing the same instruction

on a different data at the same time.

2.5 MIMD

Computers with multiple processing elements that perform the different opera-

tions simultaneously on multiple data points are defined as Multiple Instruction

Multiple Data (MIMD)[11]. This is the most common and efficient architecture,

and most practical implementations include MIMD machines. When solving a
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single problem, all processors can be executing different subproblems on different

data.

2.6 CPU Architecure

CPUs are built for general application i.e, A CPU must be able to manage both

parallel and sequential programs and whatever problem is given to it in general.

Therefore, CPUs depends on MIMD execution, which ensures that the separate

cores are issued with different operations. This is done so that multiple operations

on different data can be performed by the various cores of multi-core CPUs.

As a consequence, a core can run a whole program on its own, or the core can

break the program between itself and split the workload. In comparison, the cores

have access to advanced operations such as branch prediction and are quicker and

more stable relative to GPU cores in general [12][13]. In this work Intel i7-4700

CPU is used. The next section explains the Intel i7-4700 CPU in detail.

2.7 Intel i7-6700 CPU

One of Intel’s sixth-generation (Haswell) i7 processors is the Intel i7-6700. It has

four cores, eight (two per core) threads and a 3.40 GHz base clock frequency.

If required, the Intel turbo boost feature can also accelerate one of the cores to

4 GHz. Also, it has 3 levels of cache where each core is separated from the first

(256kb) and second (1 megabyte), while the third (8 megabytes) is shared between

the cores34.1GB/s. Max Memory bandwidth is the maximum rate at which the

processor can read data from or store in a semiconductor memory.

The memory system also facilitates transactional memory as well as gather instruc-

tions. The transactional synchronization extension allows transactional memory

to be supported. In practice, it ensures that operations are secured by an atomic

lock.

This means that several threads will run them at the same time as long as they

don’t perform overlapping operations on the files [14].
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2.8 GPU

In comparison to CPUs, modern GPUs are constructed with the expectation that

incredibly parallel tasks are assigned to them and that they focus on high through-

put. This indicates GPU is not powerful like CPU, but for speedup of several

parallel issues, GPU can be used [15]. Execution of SIMD, a very large number

of small and basic execution cores and abundant use of multithreading hardware

[16].

� You execute the same operation with SIMD execution on multiple cores that

control different data. You can effectively execute the same procedure on

huge collections of data in this manner [16].

� In GPUs, instead of CPUs, more simple cores are used, but GPU cores are a

little complicated. The only feature that these small cores compromise is the

probability of execution out of sequence and branch estimation. But for the

chip, the spatial savings result in more cores that exceed these compromises.

This works well for SIMD, too [16].

� Hardware multithreading allows the decomposition of extremely simultane-

ous computations into several serial tasks equal to an even greater degree of

parallelism [16].

2.9 Discrete Graphics Processing Unit

The Intel i7-6700 is a CPU with a discrete GPU, as mentioned above. Discrete

graphics belongs to a graphics device that is independent from the processor.

Discrete GPU has its physical memory as a separate computing unit from the

CPU.

The PCI-Express bus is used to transmit data between CPU and GPU memory.

[17]. NVIDIA Geforce GT 740 discrete GPU is used in this thesis beside Integrated

GPU becuse discrete GPU has it own memory. It has 384 cores and 28.8 GB/s

memory bandwidth [18].
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2.10 OpenCL

Software developers should consider portability when developing their applications

because of the diversity of architectures. For any new architecture, both rewriting

an application and retaining multiple branches of a code are resource-intensive

functions. Some programming languages and frameworks to prevent rewriting

codes e.g. OpenCL [19], OpenMP [20], OpenACC [21], Kokkos [22], etc. allow

different platforms to run the same source code.

The Open Computing Language (OpenCL) [19] is an open Khronos Group stan-

dard [23]. It aims to provide heterogeneous architectures with a parallel computing

framework. The majority of available CPUs, GPUs, or accelerators on the mar-

ket have an OpenCL implementation that works. This helps an application on a

given computer to harness the computing power of the multiple enabled devices.

OpenCL offers both an Application Programming Interface (API) and a program-

ming language to achieve this purpose.

To communicate with the OpenCL runtime model, the OpenCL and the language

OpenCL C is used to program kernels that map to the OpenCL system architecture

model[19]. OpenCL helps to run the same program on two different architectures.

This is generally not feasible since the architectures of a GPU and a CPU are in-

herently incompatible. Using the MIMD model, to begin with, CPUs while using

SIMD for GPUs. Also, there are not only variations between CPUs and GPUs,

but there can also be significant differences between different GPU models in the

way parallel code is written.

That implies that the code can vary from model to model. OpenCL fixes this prob-

lem [24]. In this thesis concentrates on analyzing the execution of the OpenCL

program on two different architectures.

2.10.1 Platform Model

OpenCL is an open platform specifically for parallel programming that produces

highly portable code, this means that different platforms use the same code. Used

by OpenCL, the model consists of a host and many devices. The host maps to the

main program control core, For example, if the program is running on a processor,
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Figure 2.1: Platform model.one host plus one or more compute devices each
with one or more compute units. [10].

it maps to the core that begins and merges the threads, and it maps to the system

CPU if it is running on a GPU. As a consequence, the modules will either map to

the rest of the cores on the CPU or to the cores of the GPU [10][25]. The Platform

model for OpenCL is defined in Figure 2.1. The model consists of a host to which

one or more OpenCL devices are attached.

2.10.2 Memory Model

The memory model of OpenCL consists of two primary types of memory, host

memory and device memory. Not unexpectedly, the host memory is the memory

accessed by the host, and the device memory is the memory accessed by the

devices. In contrast, four memory regions of the device memory consist of were

based on what type of data it is, the kernels will distribute data, and which kernels

need access to it.

In all workgroups, two global memory regions can be accessed by anyone. The first

one is global memory. In this memory area provides access to all work-items in

all work-groups to read/write and the second one is constant memory in this type

of memory data remains stable throughout execution time. Device can read data

from it but the host can allocate data in constant memory. There is a memory area

that is an independent region of each kernel that is a private memory. Finally,
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Figure 2.2: Conceptual OpenCL device architecture with processing elements
(PE), compute units and devices. [10].

there is a local memory that acts as a shared memory for devices in the same

workgroup, ensuring it can be accessed by all devices in the same workgroup [10]

[25]. The memory regions and how they relate to the platform model are described

in 2.2

2.10.3 Execution Model

Two entities are mapped to the host and the devices in the platform in the execu-

tion model. There are kernels and a host application. The kernels are run on the

devices.

Either the kernels are mapped one to one, or one to many, this mean kernel pro-

gram can run on one device and can run on many devices. However, only one host

program can run simultaneously on the host.

The host program is the only program that does everything, such as memory

control and synchronization, while the computing work is done by the kernels.

This work is carried out in so-called work-items most generally known as program
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threads, and in so-called work-groups, they work together.

In a context consisting of the devices it executes on, the kernels are specified,

OpenCL functions, the actual implementation of the kernel, as well as the mem-

ory needed for the variables on which it runs.

Every kernel context is handled via a command queue by the host program that

can be loaded from the OpenCL API with functions. The host launches new ker-

nels via the command-queue. For example, it transfers data between host and

device memory and handles synchronization between various kernels.

Also, each kernel may enqueue commands to a particular command queue for

the system on which it is running. New child kernels can be initiated from this

command-queue [10] [25].

2.10.4 OpenCL for CPUs

Although OpenCL has been developed for portability between various architec-

tures, GPU architectures are the key target and what it has mainly been used for.

As a consequence, the performance is not as portable, although the code can run

on both CPUs and GPUs [26]. Any of the particular optimizations in OpenCL for

a GPU architecture may potentially have the reverse effect on a CPU.

First, the OpenCL work-items are very small, which suits the small GPU execu-

tion units, However, it’s something of a mismatch to map these basic tasks to a

complex CPU core.

This mismatch results in the cache use of the CPU being limited, That only a

small part of the whole issue is processed by the work-item running on one hard-

ware thread. Secondly, inside the CPU cores, the SIMD units require vectorized

data that you don’t typically need in GPU code.

This means that the processing capacity of any of the cores would not be used.

Also, it would result in unnecessary data transfer between host and device if the

default data transfer model is used on GPUs. Of course, OpenCL code can also

be designed for CPUs if you run it on a GPU, which can harm performance [10].

In this work Opencl application are used for experiment to find out the execution

time of two different divice.
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2.11 Dimensions and Work-items

An index space is defined when a kernel is submitted for execution by the host.

For each point in this index space, an instance of the kernel runs. This instance

of a kernel is called a work-item and is defined by its point in the index space,

which provides the work-item with a global ID. Each work-item executes the same

code, but the specific execution pathway will vary by work-item across the code

and the data operated on. Work-items are organized into working groups. The

work-groups include the index space for a more coarse-grained decomposition. A

special work-group ID with the same dimensional space as the index space used

by work-items is assigned to the work-groups. Work-items within a work-group

are given a specific local ID such that a particular work-item can be identified

uniquely by its global ID or by a combination of its local ID and work-group

ID. The work-items operate simultaneously on the processing elements of a single

computing unit in a given work-group. The index space that OpenCL supports

is called NDRange. An NDRange is an index space of the N-dimensional, where

N is one, two, or three. An NDRange is specified by an integer array of length N

indicating the degree of each dimension’s index space. global ID and local ID are

N-dimensional tuples of each work item [10].

For GPUs, in which groups of processing cores function in a SIMD fashion, data-

parallel tasks are appropriate. A data-parallel task in OpenCL is represented as

a kernel representing the processing of a single work item.

A user-specified number of work-items are launched to run in parallel during pro-

gram execution. In a multidimensional grid, certain work-items are ordered and

Work-item subsets are combined to form workgroups, that enables the interaction

of work-items [27]. The difference in performance arises from the various architec-

tural features that occur between CPUs and GPUs.

A scalar processor (SP) or one single SIMD lane processes a single work-item on

GPUs. As is well known, GPUs are designed to accommodate a large number of

threads running simultaneously, and high thread-level parallelism (TLP) is impor-

tant for high performance [28–32]. The number of dimensions necessary for the

ID of a work-item typically equals the number of indices you can use to access

an array variable that contains the data of the work-item. Suppose, for instance,



Backgroud 14

that input data is stored in an array called point. If you usually use point[x][y] to

access the data, the number of dimensions is two. If you are using point[x][y][z] to

access the details, the number of dimensions is three [10]. One function only needs

to be known: clEnqueueNDRangeKernel. This is one of the most important fea-

tures of the OpenCL clEnqueueNDRangeKernel is used to control how the kernel

operates. Execution is divided among the computing resources of the system. in

OpenCL clEnqueueNDRangeKernel signature is

clEnqueueNDRangeKernel(cl command queue queue, cl kernel kernel,

cl uint work dims, const size t *global work offset, const size t

global work size, const size t *local work size, cl uint num events,

const cl event *wait list, cl event *event)

In this function, the second argument is work dims which represent the number

of data dimensions and in this work dimension of data has a strong impact on our

results impact of dimension is discussed in the result and analysis section.

2.12 Loop Unrolling

Loop unrolling is the method of reducing the power of the loop by rising the

body size loop. This mechanism can be seen as repetitive individual statements

re-writing the loop body. In many OpenCL/CUDA programs, loop unrolling is

used [33] [34]. The key advantages obtained from loop unrolling are: Due to fewer

comparisons and branch behaviors with the same amount of work performed, the

decreased complex instruction count.

The compiler’s scheduler will use these instructions to increase Instruction Level

Parallelism (ILP) and hide pipeline and memory access latencies to improve schedul-

ing opportunities due to the availability of additional independent instructions.

Opportunities to exploit the position of the register and memory hierarchy as ex-

ternal loops are unrolled and internal loops are fused [34]. loop unrolling is a

helpful optimization for GPGPU programs. [35] To parallelize the process of im-

age convolution with CUDA [35] suggested the strategy of loop unrolling. This

method requires lots of iterations, but a few computations were used in each iter-

ation. The unrolling of the loop thus increased the calculations per iteration and
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decreased the overall number of iterations [36].

The technique of loop interchange will improve the efficiency of a parallel code.

If no dependencies exist in the body of two nested loops, nested loops may be

interchanged. [37] To simplify the parallel code, the loop interchange technique

[37]. On several tasks, like the Laplace filter to a 256*256-pixel image, they then

evaluated the proposed parallel code. In this work loop unrolling has a strong im-

pact on our result. Impact of loop unrolling is discussed in the result and analysis

section.

2.13 Parallel Algorithms and Data parallel Al-

gorithms

Parallel algorithms are algorithms programmed to execute various instructions in

one clock cycle. However, the algorithm in question has to include many paral-

lelization possibilities to achieve output from parallelizing an algorithm [38]. In

other words, to be able to break the problem into sections, the algorithm can

manage a very broad problem and have a suitable division such that as many as

possible can be run in parallel.

Algorithms that are specifically appropriate for this are, for example, convolution

and matrix operations. In this work, eleven different parallel data algorithms from

Pollybenchmark suit [6] were used to compare CPU and GPU performance.

2.14 PolyBench Kernels

Polybench is a set of computation kernels used to test the performance of compil-

ers and related applications, such as matrix multiplication, 2D or 3D convolution,

or linear equation solver.

Mentioned application is consider as a core of many applications for high-

performance like image processing [39]. In this work, we will therefore evaluate the

poly bench suit [6]. The next session explains some details about each application

of the polybench suit.
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Figure 2.3: Application in Polybench suit that are tested in this work.

2.14.1 2MM

Two Matrix Multiplication (2MM) is one of the kernels of linear algebra that con-

sists of two multiplications of matrixes [40].

In most the papers use this application for comparison of two architecture. In this

application we give simple floating value as a input size. When we input to that

application floating value in two 2 x 2 matrix beacuse it is 2mm application in

which two matrix are multiped and find the performance of two device.

The following are provided as input:

αβ

A is a matrix of P x Q

B is a matrix of Q x R

C is a matrix of R x S

D is a matrix of S x T

Gives as output the following:
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E P x S matrix, Where E = αABC + βD

2.14.2 3MM

Three Matrix3 Multiplication (3MM) is one of the kernels of linear algebra [40]

that consists of three multiplications of matrixes and includes G= (A*B)*(C*D).

that take the following as a input:

A is a matrix of P x Q

B is a matrix of Q x R

C is a matrix of R x S

D is a matrix of S x T

Gives as output the following: G P x T matrix, Where G = (A.B). (C.F).

2.14.3 ATAX

ATAX is one of the kernels of linear algebra [39] that computes AT time Ax that

takes the following input:

A is a matrix of M x N

x is the vector of N length

Gives as output the following: Y vector of length N, where y = AT (Ax).

2.14.4 BICG

BiCGSTAB’s Kernel (BiConjugate Gradient STABilized method). BICG is one

of the kernels of linear algebra [40].

It takes the following input:

A is a matrix of N x M

p is the vector of M length

r is the vector of N length
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Gives as output the following:

q is the vector of N length Where q = Ap s is the vector of M length Where =

AT r.

2.14.5 Gesummv

Gesummv is one of the kernels of linear algebra [40]. It takes the following input:

α β scalars

A, B is a matrix of N x N

X is the vector of N length

Gives as output the following: y is the vector of N length, Where y = αAx + βBx.

2.14.6 MVT

Matrix vector multiplication with a separate matrix-vector multiplication, but

with a matrix transposed [40].

It takes the following input:

A is a matrix of N x N

y1, y2 is the vector of N length

Gives as output the following:

x1 is the vector of N length , Where x1 = x1 + Ay1

x2 is the vector of N length , Where x2 = x2 + ATy2.

2.14.7 Covariance

Compute the covariance, a mathematical measure that indicates how two variables

are linearly connected [40].

It takes the following input:

Data: N x M matrix representing.

N data points, each with M attributes.

Gives as output the following

Cov: M x M matrix where the covariance between i and j is the i, j-th element.
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2.14.8 Correlation

Correlation measures the coefficient correlation (Pearson’s), which is normalized

covariance[40].

It takes the following input:

Data: N x M matrix representing N data points, each with M attributes.

Gives as output the following

Cov: M x M matrix where the correlation coefficient between i and j is the i j-th

element.



Chapter 3

Literature Review

GPU acceleration has been studied by many scientists since the rise of multi-core

computers. V.W.Lee et al [7] examines how much performance GPU acceleration

on an NVidia GTX280 GPU achieves compared to running it normally on an Intel

Core i7-960 Processor. The comparison was conducted on the two processors by

running 14 different throughput computing kernels. To capture the core computing

and memory characteristics defined by the PARSEC and PARBOIL benchmark

suite apps, the kernels are designed. Also, their performance study reviews the

execution time of the various kernels was bound by and finally explains how to

modify the code based on which platform you use. Their outcome indicates that

although GPU acceleration is equivalent to performance improvement, it is not

usually specified in the order of magnitude. The performance increase is about 2.5

time faster execution time on the GPU, according to their comparisons between

the GTX 280 and i7-960. They figured that depending on which CPUs and GPUs

were used and what kind of optimizations were used in the code.

M.Daga et al [41] analyses the accelerated AMD Fusion processing unit, a CPU

with an integrated GPU. They compare this APU architecture more specifically

to the more common of a discrete CPU combined with a discrete GPU and why

APUs can beat the performance of discrete GPUs wisely. They also state that the

main advantage of using an APU architecture is that you can get around the PCIe

20
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performance bottleneck, as in many of the other works referenced here. Nonethe-

less, they also state that you can not necessarily get better results. The size of

data needs to be very high to benefit performance by not having to submit data

over the PCIe. There are no major efficiency gains for small data sets Moreover to

model real-life workloads, they tested the architecture with four benchmark appli-

cations (MD, FFT, Search and Reduction) from the SHOC benchmark suite. The

AMD Zacate APU, the AMD Radeon HD 5870 GPU, and the AMD Radeon HD

5450 were used to perform the test. The 5870 is a high-performance GPU, while

the 5450 is an APU variant that is more or less discrete. MD runs fast on the

5870, but on the APU it runs faster than on the 5450. However, FFT on the APU

is the slowest because it relies too much on the processing and memory which is

very slow compare to the other two. However, given a big enough problem size,

both scan and reduction ran fastest on the APU.

S.Azmat et al [42] analyses if the multi-modal mean (MMM) algorithm can be

accelerated compared to running it on a single core Atom-330 CPU with Nvidia’s

low-powered ION GPU. MMM is an image processing algorithm that segments

the background from the foreground and holds the background pixel values in

running a program. Depending on the sort of context it represents, pixels have up

to 4 modes and each mode contains different means of all the color components

(i.e.RGB) of a pixel. All the optimizations performed on the CUDA platform are

still comprehensive. Their finding shows that 6X speedups have been reached.

Compared to (100fps) on a low-power integrated GPU platform, of similar power

specifications to a CPU platform.

S.Kim et al [43] analyses the Intel HD Graphics 4600 GPU is used to speed up

MapReduce tasks in the data center cluster system of Apache Hadoop and com-

pared them to an equivalent CPU implementation. On a 4-node cluster and a

1-node cluster, the experiments were conducted and they used the HiBench bench-

mark suite to analyze. The metrics of performance they used were performed in

time, consumption of power, and IO Overhead isolation. They simply measured

the execution times and compared them to measure the efficiency with time. They

ran the experiments several times to eliminate differences and used an average

Since MapReduce is very IO-dependent, the tests they conducted separated the

performance impact of the IO.
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In actual comparison, they calculated how easily they could send data isolated

from all other components to the map task. Finally, the power usage of all 4

nodes together on the 4-node cluster was calculated and the power consumption

of the CPU and integrated GPU on the 1-node cluster was calculated. They con-

cluded that the MapReduce task was transformed from a Compute bound kernel

to an IO-bound kernel on the integrated GPU and that the GPU got a significant

speed-up over the CPU.

E.Ching et al [44] authors using integrated GPUs in database processing for data

bandwidth-dependent jobs, such as queries, instead of discrete GPUs. They used

the Nvidia GTX 780 discrete GPU and the Intel HD 4600 integrated GPU in their

tests. The memory interconnection speeds, the cache design, and the comput-

ing power are the key architectural differences. Cache design and interconnection

speed in the favor of integrated GPU beside the discrete GPU has access to a

bigger cache. As far as computing power is concerned, it is a little more com-

plex, since the discreet GPU outperforms the incorporated nine times solely in

floating-point operations. Nevertheless, the integrated one has many more data

lanes on which instructions can be run, resulting in a larger amount of parallelism

that favors many small jobs. The integrated GPU outperforms the discrete in this

kind of bandwidth dependent workloads because of the faster memory links and

the extra parallelism. In addition to running the database queries on the i7-4770k

CPU, they also compared the integrated GPU. The CPU outperformed the GPU

by a small amount (1-2 ms) at pure execution speed, but when it was normalized

to power consumption, the GPU outperformed the CPU by a significant amount.

Another work introducing BLAS and contrasting the various architectural styles

of CPU and GPU attributes. The various subprograms in BLAS were tested by

detailed experiments and suggest a selection method for the processor that can

lead the optimization of the main computational activity and author analyze the

effectiveness of various BLAS activities on various platforms. Xeon E5-2620v3

uses the Haswell core which supports two CPUs at the same time, while the Kaby

Lake core is used for Core i7 7700 and Core i5 7500. The Kepler architecture

is Tesla K40c, while the Pascal architecture is GTX1080 Ti and GTX1070. The

experiment shows that the result of the Core i7 7700 is higher than that of the

Xeon E5 2620v2, but the three CPUs have poorer performance than that of the
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GPU. When we execute GEMM and GEMV as the matrix dimension increases,

the processing time increases on the CPU and GPU. GPU tests are faster than

CPU experiments and in TSRV and if certain serial data dependencies remain,

but since the sum operation can be done in parallel on the GPU, the impact of

both the GPU is still greater than the CPU [45].

Z.Huang et al [46] authors work on matrix multiplication in machine learning,

which is a popular and time-consuming computing process is implemented on var-

ious data scales and methods of development analyze the relationship between

the efficiency of GPU computing with matrix scale and methods of growth. Two

architecture used for the experiment first one was intel Xeon E5 2640 CPU and

NVIDIA Tesla P100 GPU, the experimental studies show that in small-scale data

estimation, the GPU output is not much improved relative to the central processing

unit. In the estimation of the small-scale matrix, the GPU degree of parallelism

is not massive, because many computer cores are not completely used and the

performance difference compared to multi-core CPUs is not high but GPU is fully

utilized when the matrix size increased.

V.Saahithyan et al [47] analyses the performance of Different fundamental image

processing algorithms on the GPU and CPU. For testing, different images with a

variety of dimensions were used. The findings reveal that the GPU’s usability for

problems with image processing is strongly dependent on the nature and size of the

problem. As the matrix size gets greater and bigger GPU wins, the CPU continues

to generate better performance up to a certain matrix size. In W.Thomas et al

[48] defined an application as GPU or CPU suitable by analyzing factors, whether

they are hardware components or software constructs, on which faster execution

of program depends. In this study author thoroughly discusses the evolutionary

journey of GPUs. Parameters taken into account for performance comparison are

throughput and latency So, written with the Compute Unified System Architec-

ture (CUDA) C language, based on the execution time of a GPU and processor

for a specified task.With a change in workload size, the two parameters are mea-

sured. As the job size is raised, as the GPU reaches 100 % occupancy, the GPU is

found to be around 51% faster than the multithreaded CPU. GPU’s throughput

is observed to be 2.1 times greater than that of the Large Job Size CPU. GeForce

GT630M from NVIDIA with Intel’s i-5 3210M 3rd generation CPU is used for the
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experiment.

Heterogeneous architecture has multi-core CPUs as well as many-core GPUs and

performs parallel execution [49]. Task scheduling in heterogeneous architecture

is a challenging job. An OpenCL framework is designed to perform task execu-

tion on heterogeneous architecture. Many features affect the scheduling of a task.

Tasks like out-of-order execution, branch prediction, etc. are suitable for CPU

while parallel execution of tasks is more suitable on GPU. The main theme of this

research is to map OpenCL applications based on process capability and applica-

tion/device suitability and is achieved through a machine learning classifier that

predicts the computational compatibility of processors. LLVM based analyzer is

used for feature extraction and tree-based method for classifier selection.

Resource Aware Load Balancer for Heterogeneous Cluster [50] RALB-HC is a su-

pervised machine learning-based approach that distributes the workload in multi-

node heterogeneous computing environments based on the computing capabilities

of resources and needs of applications computing. The model considers the device

suitability, the expected speedup, and the load balancing for job mapping in het-

erogeneous environments.

The RALB-HC technique works in 2 phases: 1) Mapping of jobs is based on avail-

able resources. 2) Load balancing for a higher resource utilization ratio. It also

automates the decision about jobs for a specific computing device. Synthetic and

Google-like workloads are produced using AMD, Polybench benchmark, etc. for

testing the performance. RALB-HC reduces the execution time, increases the uti-

lization of resources, and improves the throughput.

Troodon [51] schedules the given task in a heterogeneous system in a load-balanced

manner considering job requirements, device suitability, and also performance pre-

dicted on a processor.

CPU suitable and GPU suitable jobs are combined in a pool of jobs based on the

suitability of the device and sorted on the base of predicted speedup. Load bal-

ancing mechanism is gained on the basis of job processing requirements and device

computation capabilities. Lower execution time maximum throughput, higher de-

vice utilization is achieved through device suitability. and mapping of jobs in a

load-balancing manner. Users allocate OpenCL programs, and the computational

assessment module checks the computational requirement through computational
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complexity and data size. The Kernel code features extractor extracts the Code

features from the OpenCL job and provides a device suitability classifier to clas-

sify and label according to device suitability. The OpenCL programs along with

the code feature extracted and input data size are provided to the speedup pre-

dictor component to predict speedup concerning other devices. The application

then sorts the CPU-GPU job pool on the basis of device suitability where CPU

suitable jobs pool is arranged in descending order on the basis of speedup and

GPU suitable jobs pool is arranged in ascending order. After sorting, both job

pools are combined for scheduling. E-OSched maps the jobs to CPU-GPU jobs.

The top jobs from the job pool are mapped to CPU while jobs at the bottom are

mapped to GPU.

Table 3.1: Critical Analysis of Literature Review.

Ref Benchmark Feature Result

[7]
PARSEC, PAR-

BOIL

Hardware

Feature

increase is about 2.5time’s

faster execution time on the

GPU, according to their

comparisons between the

GTX 280 and i7-960

[41]
MD,FFT,Search

Reduction

Hardware

Feature

MD runs fast on APU, FFT

runs fast 5870 and 5450 re-

duction ran fastest on the

APU

[42]
Multi-Model mean

(MMM) Algorithm
Nill

CPU 6X seedups have been

reached compared to on a

low-power integrated GPU

platform

[43] HiBench

Hardware

and Soft-

ware Feature

GPU got a significant

speedup over the CPU
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[44] Micro-Benchmarks
Hardware

Feature

For small amount of data

GPU performance is perfect

then GPU but for significant

amount GPU perform good

compare to CPU

[46]
Matrix Multiplica-

tion

Software

Feature

For small amount CPU per-

formance is better but when

input size increase GPU per-

form then GPU but for sig-

nificant amount GPU per-

form better

[45] BLAS
Hardware

Feature

Performance of i7-7700 is

beter than Xeon E5-2620,

GEMM, GEMV and TSRV

execution is fast on GPUs

In short, speedup on CPU-GPU seems to be achievable from these previous works.

However, since the program is well adapted to parallelism, it is not ensured that

the GPU can run faster. It seems to rely a lot on the particular program and what

it is constrained by ? whether the GPU or the CPU runs the application faster.

Applications that are highly computation intensive generally prefer CPUs, as they

require higher single thread speeds that are supported by CPUs. Bandwidth-

bounded programs, on the other hand, typically tend to support GPUs. Note,

though, that this is not always accurate, many software features can affect the

CPU-GPU performance. For instance, many researchers use machine learning to

predict [49] [50] [51] a suitable architecture (CPU or GPU) for a particular appli-

cation by extracting various software features (more than twenty software features

are used in these studies, like the number of loops, functions and integer value etc

). However, in contrast to these studies, we use a different approach, we measure
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the performance of an application on both CPU and GPU and then investigate the

reason behind the better performance for a specific architecture. In this regard, we

analyze OpenCL code and find out software features that affect the performance

of an application. According to our findings, loop unrolling and data dimension

are two important software features that affect the performance of an application.

We believe the study of these two software features is our unique contribution

since the aforementioned studies of other researchers use a different set of software

features. Furthermore, we study the performance of various applications which

belong to different domains such as convolution, linear algebra, data mining, and

stencils. According to the best of our knowledge, there is no existing work that

performed such detailed analysis for all these applications.



Chapter 4

Research Methodology

In this chapter, the selection of applications, implementation and how the analysis

was done is presented.The program selection is important when analyzing CPU-

GPU performance. If the same type of program runs on different architectures

and is only suitable for one of them, then it is impossible to select best device for

application that why different type of OpenCL applications are selected. There

are two programs in an OpenCL application. The host program is the first, and

the kernel program is the second.

If the program is operating on a processor, the host maps to the program’s main

control center, map the kernel program to reaming core and GPU case map the

kernel program to the CPU and kernel program is mapped on GPU by the host

program. Until running an OpenCL application, it’s necessary to understand the

architecture.

In this work, Intel’s sixth-generation (Haswell) i7 processor with NVIDIA Geforce

GT 740 discrete GPU is used. After selecting the application and underline ar-

chitecture each application is execute on CPU and GPU with different input sizes

using Linux operating system. I compare CPU-GPU performance based on the

result after running all programs on CPU-GPU to get a better idea of which ap-

plications are suitable for CPU and GPU. The schematic of the proposed method

is shown in Fig 4.1.

28
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Figure 4.1: Methodology Diagram

4.1 Application Selection

To analyze the CPU-GPU performance, the application selection is very impor-

tant. If the same type of application executes on different architecture and this

is only suitable for a single architecture then it is very difficult to decide which

architecture is suitable,or if one algorithm that was perfectly fit to the GPU was

the one we thought would have the highest chance of running on the GPU faster.

This was based on the following considerations and the architectural limitations of
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Figure 4.2: Classfication of Polybench Application

previous research. The CPU is typically preferred by computer-bound algorithms

since they have a much higher clock frequency. Bandwidth-Bounded typically

benefits the GPU because the GPU has at least as fast data access as the CPU

much of the time (if not faster).

The architecture with the highest cache supports cache-bounded algorithms. That,

is why in this work, the different types of applications have been chosen to com-

pare the CPU GPU and performance like convolution, Linear Algebra, and Data

mining those widely use applications suitable to find out the performance of two

different architecture.in section 2.14 briefly discuss the applications.

4.2 Underline Architecture

It is important to know about the nature of architecture before executing OpenCL

application. In this work, Intel’s sixth-generation (Haswell) i7 processor. It has

four cores, in which two are physical core and two are logical core. Each core can

execute two threads simultaneously and it has 3.40 GHz base clock frequency with

NVIDIA Geforce GT 740 discrete GPU it has 384 cores and 28.8 GB/s memory

bandwidth is used. NVIDIA Geforce GT 740 is a Discrete GPU that type of GPU

has physical memory as a separate computing unit from CPU.
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Table 4.1: Central processing Unit Details

Vendor intel
Processor intel i7-6700
Clock Speed 3.40 GHz
Memory
Bandwidth

34.1 GB/s

No of Core 4
Threads 8
Cache 8 MB

Table 4.2: Graphical Processing Unit Details

Vendor Nvidia
Graphic Card
version

GT 740

Clock Speed 1.8 GHz
Memory
Bandwidth

28.8 GB/s

No of Core 384

4.3 Job Execution

Although the benchmark programs were written in OpenCL by the authors from

scratch, there is no need to change the application. I run each application on CPU

as well as GPU using Linux operating system. Every OpenCL application consists

of two programs one is host program and second one is kernel program.

For example, if the program is running on a processor, the host maps to main

control center of the program, maps to core that starts and merges the threads,

and maps to the system CPU if it is running on a GPU. In this work the OpenCL

applications are execute on CPU and GPU also. In the CPU case host program

is map to a core core and host is map on remaing core of CPU.

In GPU case the host program is map on CPU and the kernel program to GPU.

For job execution, first, make the executable file of each program Figure 4.3 shows

Linux command by making an executable file of each program after that execute

each program on CPU and GPU. Figure 4.4 shows the Linux command to execute

application. Every program is executed severally with the different input sizes.
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Figure 4.3: Linux command to make an executable file

Figure 4.4: Linux command to execute the application.

4.4 Result Compute

After executing each application on different architectures result are computed.

Result file consists of application name mean the type of application. It belongs

to linear algebra, data mining or convolution, etc. Input size represent the input

size of the application in my experiment input size is the multiple of two, CPU

execution time represent, how much time CPU takes to execute the application

with given input size similarly GPU execution time means how much time GPU

takes to execute the application with given input size. Figure 4.5 represents the

sample of experiment result and complete data is available in appendices.

4.5 Performance Analysis

After executing all applications on CPU-GPU and computing the result, I com-

pare the CPU-GPU performance based on the result.



Research Methodology 33

Figure 4.5: Experiment Result Sample

That why the research is consists of two parts: firstly, testing which implementa-

tion is faster and, secondly, why it is faster? The first component is completely

focused on the execution time of the application i.e that architecture takes how

much time to execute the application?

The second part of this work is to analyze the result that is in which case the

GPU implementation has a faster execution time than CPU exaction time and

if what was the reason CPU execution is fast then GPU what reason behind it

and what type of software feature effect the performance of CPU and GPU. The

next chapter explains the variation in CPU-GPU execution time and explains the

software feature which is affecting the performance of CPU-GPU architecture.



Chapter 5

Result and Analysis

This chapter will demonstrate and analyze the performance of CPU Implemen-

tation and GPU implementation of Polybench suit. The input data size for each

program is multiple of two to evaluate the performance of CPU-GPU implemen-

tation. This thesis starts by first understanding kernels that run fast on a single

architecture. For example, 2DCONV, 3DCONV and FDTD-2D applications are

fast on GPU for every input size and the Atax application is fast on CPU for every

input size. The performance effects are evaluated and the features that contribute

to the performance of each kernel are established. The performance is measure

as CPU execution time and GPU execution against different input sizes of each

application. In this work analysis is done on the behalf of software feature first

one is loop unrolling and Dimension of data those impact the performance of the

application on different architectures. In this chapter, we explain the impact of

these features on CPU and GPU performance and also see the kernel and host

program of each application.

5.1 3DCONV

3D Convolution kernel program is executed on CPU and GPU with the different

input size. But all the time it executes fast on GPU. For a small input size, there

34
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Figure 5.1: CPU-GPU execution time for 3DCONV application.

is no big difference between CPU and GPU execution time but when input size

increases the performance of GPU increase as compare to CPU performance. It

is clearly shown in 5.1 graph when the input size is 620 GPU takes 0.2 sec to

execute the 3DCOV application but on the other hand, CPU takes 0.8 sec for ex-

ecution.Figure 5.1 shows CPU-GPU execution time for the 3DCONV application.

To examine why the program was always running faster on the GPU as compared

to the CPU, analyze the host program and kernel program of 3DCONV. The anal-

ysis demonstrates that the GPU execution was significantly fast by the maximum

number of loop unrolling and two Dimension of data in 3DCONV application. All

nested loops are unrolled in 3DCONV kernel program.

5.2 2DCONV

2D Convolution kernel program is executed on CPU and GPU with the different

input size. but all the time it executes fast on GPU.for a small input size there

is no big difference between CPU and GPU execution time but when input size

increases the performance of GPU increase as compare to CPU performance. It is

clearly shown in 5.2 graph when the input size is 15500 GPU takes 0.168965 sec to
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Figure 5.2: CPU-GPU execution time for 2CONV application.

execute it but on other hand, CPU takes 20 sec for execution. in 2DCONV input,

size is multiple of two and start graph from 1024 for input size 1-512 execution

time for CPU and GPU is less than one sec so it is not visible in a graph that

why we start it from input size 1024. Figure 5.2 shows the result for 3DCONV

implementation. To examine why the program was always running faster on the

GPU as compared to the CPU, analyze the host program and kernel program of

2DCONV. The analysis demonstrates that the GPU execution was significantly

fast by the maximum number of loop unrolling and two Dimension of data in

2DCONV application. All nested loops are unrolled in 2DCONV kernel program.

5.3 FDTD-2D

FDTD-2D kernel program is executed on CPU and GPU with the different input

size. But all the time it executes fast on GPU.for a small input size there is

no big difference between CPU and GPU execution time but when input size

increases the performance of GPU increase as compare to CPU performance. It

is clearly shown in 5.3 graph when the input size is 12000 GPU takes 29.2373 sec

to execute FDTD-2D but on other hand, CPU takes 169 sec for execution. In
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FDTD-2D input, size is multiple of two and start graph from 256 for input size

1-128 execution time for CPU and GPU is less than one sec so it is not visible

in a graph that why we start it from input size 1024.Figure 5.3 shows the result

for FDTD-2D implementation. To examine why the program was always running

Figure 5.3: CPU-GPU execution time for FDTD-2D application.

faster on the GPU as compared to the CPU, analyze the host program and kernel

program of FDTD-2D. The analysis demonstrates that the GPU execution was

significantly fast by the maximum number of loop unrolling and two Dimension of

data in FDTD-2D application. All nested loops are unrolled in FDTD-2D kernel

program.

5.4 ATAX

ATAX application is executed on CPU and GPU with the different input size.

In the previous OpenCL kernels like 2DCONV, 3DCONV and FDTD-2D those

kernel execution remains fast all the time on GPU but ATAX OpenCL kernel

execution is opposite to previous execution it remains fast all the time on CPU.

For a small input size, there is no big difference between CPU and GPU execution

time and when input size increases the performance of CPU increase as compare
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Figure 5.4: CPU-GPU execution time for ATAX application.

to GPU performance. It is clearly shown in a graph when the input size is 4096

CPU takes 0.018337 sec to execute it but on other hand, GPU takes 8.756636 sec

for execution. Figure 5.4 show the result for ATAX implementation.

To examine why the program was always running faster on the GPU as compared

to the CPU, analyze the host program and kernel program of ATAX. The analysis

demonstrates that the CPU execution was significantly fast because there is no

loop unrolled in its kernel program and one dimension data is used in the ATAX

application.

In previous there are three OpenCL application 2DCOV,3DCONV and FDTD-2D

always execute fast on GPU.when analysis the OpenCL program of those applica-

tion demonstrates that the GPU remains all the time fast for these application first

all nested loops in the host program are unrolled in the kernel program secondly

there two-dimension data is used in these OpenCL application which executes fast

on GPU for all input size on other hand ATAX execute all the time on CPU than

GPU when analysis the ATAX application indicate the nested loop in ATAX host

program didn’t unroll in ATAX kernel program and second in ATAX application

dimension of data is one. Those are the feature that effecting the ATAX perfor-

mance on CPU and GPU. It mean less of loop unrolling and one dimension in

data is good for CPU.
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5.5 2MM

2MM Linear algebra application is executed on CPU and GPU with the different

input size. In the 2MM experiment result there are two types of variations that

have been seen 1) for small and large input size GPU performance is better than

CPU 2) For some middle input size CPU performance is better than GPU. Figure

5.5 shows the 2MM application execution time of CPU-GPU for 1-128 input size,

figure 5.6 shows the 2MM application execution time of CPU-GPU for 243-1024

input size, figure 5.7 the shows 2MM application execution time of CPU-GPU for

1024-4096 input size. To examine why the program was always running faster on

Figure 5.5: 2MM application execution time of CPU-GPU for 1-128 input
size

the GPU for small and large input sizes and why the program was running faster

on CPU for middle input size. To find out the reason for such variation analysis

of the host and kernel program of 2MM is done. There are two nested loops in the

2MM host program and two dimensions in the data. The analysis demonstrates

that the GPU execution was significantly fast for small and large input size and

CPU execution was fast for middle input size because there are two loops unrolled

from each nested loop and data in portioned in two dimensions. Much as in

the previous application result 2DCONV, 3DONV and FDTD-2D GPU remain
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Figure 5.6: 2MM application execution time of CPU-GPU for 243-1024 input
size

Figure 5.7: 2MM application execution time of CPU-GPU for 1024-4096 input
size
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Figure 5.8: 3MM application execution time of CPU-GPU for 1-64 input size.

fast. all the time because all loops are unrolled in kernel function and data is

portioned in two dimensions but in the 2MM application two-loop are unrolled

but the innermost loop didn’t unroll that why this study indicate GPU execution

remain fast for small and large input size and CPU execution remain fast for some

middle input size.

5.6 3MM

3MM Linear algebra application is executed on CPU and GPU with the different

input size. In the 3MM experiment result there are two types of variations that

have been seen 1) for small and large input size GPU performance is better than

CPU 2) For some middle input size CPU performance is better than GPU. Figure

5.8 shows the 3MM application execution time of CPU-GPU for small input size,

figure 5.9 shows the 3MM application execution time of CPU-GPU for middle

input size, figure 5.10 the shows 3MM application execution time of CPU-GPU

for large input size. To examine why the program was always running faster

on the GPU for small and large input size and why the program was running

faster on CPU for middle input size. To find out the reason for such variation
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Figure 5.9: 3MM application execution time of CPU-GPU for 81-729 input
size.

Figure 5.10: 3MM application execution time of CPU-GPU for 1000-4600
input size.



Result and Analysis 43

analysis of the host and kernel program of 3MM is done. There are three nested

loops in the 3MM host program and two dimensions in the data. The analysis

demonstrates that the GPU execution was significantly fast for small and large

input size and CPU execution was fast for middle input size because there are two

loops unrolled from each nested loop and data in portioned in two dimensions.

Much as in the previous applications result from 2DCONV, 3DONV, and FDTD-

2D GPU remain fast all the time because all loops are unrolled in kernel function

and data is portioned in two dimensions but in the 3MM application two-loop are

unrolled from each nested loop but the innermost loop of each nested loop didn’t

unroll that why this study indicate GPU execution remain fast for small and large

input size and CPU execution remain fast for some middle input size.

5.7 GEMM

GEMM Linear algebra application is executed on CPU and GPU with the different

input size. In the GEMM experiment result there are two types of variations that

have been seen 1) for small and large input size GPU performance is better than

CPU 2) For some middle input size CPU performance is better than GPU. Figure

5.11 shows the GEMM application execution time of CPU-GPU for small input

size, figure 5.12 shows the GEMM application execution time of CPU-GPU for

middle input size, figure 5.13 shows GEMM application execution time of CPU-

GPU for large input size. To examine why the program was always running faster

on the GPU for small and large input size and why the program was running

faster on CPU for middle input size. To find out the reason for such variation

analysis of the host and kernel program of GEMM is done. there are one nested

loop in the GEMM host program and two dimensions in the data. The analysis

demonstrates that the GPU execution was significantly fast for small and large

input size and CPU execution was fast for middle input size because there are two

loops unrolled from nested loop and data in portioned in two dimensions. Much

as in the previous applications result from 2DCONV, 3DCONV and FDTD-2D.

GPU remain fast all the time because all loops are unrolled in kernel function

and data is portioned in two dimensions but in the GEMM application two-loop
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Figure 5.11: GEMM application execution time of CPU-GPU for 1-64 input
size.

Figure 5.12: GEMM application execution time of CPU-GPU for 128-729
input size.
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Figure 5.13: GEMM application execution time of CPU-GPU for 1000-4600
input size.

are unrolled from each nested loop but the innermost loop of each nested loop

didn’t unroll that why this study indicate GPU execution remain fast for small

and large input size and CPU execution remain fast for some middle input size.

After execution of GEMM, 3MM and 2MM the results of all these applications are

the same for example GPU execution impressively fast for small and large input

but as compared to CPU execution in same CPU execution remains fast for middle

input size as compared to GPU. after analyzing that OpenCL applications host

and kernel programs two things common in all application first two dimensions

in data second in host program of each application there are nested loop in 2MM

two nested loops, 3MM three nested loops and in GEMM one nested loop and two

loops are unrolled in the kernel program of these applications.

5.8 MVT

MVT Linear algebra application is executed on CPU and GPU with the different

input size. In the GEMM experiment result, there are two types of variations that

have been seen 1) for small input size GPU performance is better than CPU 2)

but as input size increase CPU perform better than GPU. Figure 5.14 shows the
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execution time of CPU-GPU for MVT application for small input size figure 5.15

shows the execution time of CPU-GPU for MVT application for large input size.

To examine why the program was always running faster on the GPU for small

Figure 5.14: MVT application execution time of CPU-GPU for 1-27 input
size.

input size and why the program was running faster on CPU for large input size.

To find out the reason for such variation analysis of the host and kernel program

of MVT is done. There are two nested loops in the MVT host program and one

dimension in the data.

The analysis demonstrates that the GPU execution was significantly fast for small

input size and CPU execution was fast for large input size because there is one

loop unrolled from each nested loop and data is portioned in one dimension.

Much as in the previous application result from ATAX CPU remain fast all the

time because there is no loop unrolled in its kernel and data is portioned in one

dimension.

But in the MVT application one-loop is unrolled from each nested loop but the

inner loop of each nested loop didn’t unroll that why this study indicates GPU

execution remains fast for small and but CPU execute MVT kernel program fastly

than GPU when input size increase. Such variation has been seen when in put

size.



Result and Analysis 47

Figure 5.15: MVT application execution time of CPU-GPU for 128-11000
input size.

5.9 BICG

BICG Linear algebra application is executed on CPU and GPU with the different

input size. In the BICG experiment result, there are two types of variations that

have been seen 1) for small input size GPU performance is better than CPU 2)

but as input size increase CPU perform better than GPU. Figure 5.16 shows the

execution time of CPU-GPU for BICG application for small input size figure 5.17

shows the execution time of CPU-GPU for BICG application for large input size.

To examine why the program was always running faster on the GPU for small

input size and why the program was running faster on CPU for large input size.

To find out the reason for such variation analysis of the host and kernel program

of BICG is done.

There are one single loop and one nested loop in the BICG host program and one

dimension in the data. The analysis demonstrates that the GPU execution was

significantly fast for small input size and CPU execution was fast for large input

size because there is one loop unrolled from each nested loop and data is portioned

in one dimension. Much as in the previous application result from ATAX CPU

remain fast all the time because there is no loop unrolled in its kernel and data
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Figure 5.16: BICG application execution time of CPU-GPU for 1-27 input
size.

is portioned in one dimension. But in the BICG application one-loop is unrolled

from each nested loop but the inner loop of each nested loop didn’t unroll that why

this study indicates GPU execution remains fast for small and but CPU execute

BICG kernel program fastly than GPU when input size increase.

5.10 GESUMMV

GESMMV Linear algebra application is executed on CPU and GPU with the dif-

ferent input size. In the BICG experiment result, there are two types of variations

that have been seen 1) for small input size GPU performance is better than CPU

2) but as input size increase CPU perform better than GPU. Figure 5.18 shows

the execution time of CPU-GPU for GESUMMV application for small input size

5.19 shows the execution time of CPU-GPU for GESUMMV application for large

input size. To examine why the program was always running faster on the GPU

for small input size and why the program was running faster on CPU for large

input size. To find out the reason for such variation analysis of the host and kernel

program of GESUMMV is done. There is one nested loop in the GESUMMV host
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Figure 5.17: BICG application execution time of CPU-GPU for 128-15500
input size.

program and one dimension in the data. The analysis demonstrates that the GPU

execution was significantly fast for small input size and CPU execution was fast

for large input size because there is one loop unrolled from nested loop and data

is portioned in one dimension.

Much as in the previous application result from ATAX CPU remain fast all the

time because all loops are unrolled in kernel function and data is portioned in one

dimension but in the GESUMMV application one loop is unrolled from nested loop

but the inner loop of the nested loop didn’t unroll that why this study indicate

GPU execution remain fast for small input size and CPU execution remain fast

for large input size.

After execution of MVT,and BICG the results of all these applications are the same

for example GPU execution impressively fast for small input but as compared to

CPU execution in the same way CPU execution remains fast for large input size

as compared to GPU. after analyzing that OpenCL applications host and kernel

programs two things common in all application first one dimension in data second

in host program of each application there are nested loop in MVT two nested

loops, BICG one nested loops and in the kernel program of these application one

loop unrolled from each nested loop.
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Figure 5.18: GESUMMV application execution time of CPU-GPU for 1-27
input size.

Figure 5.19: GESUMMV application execution time of CPU-GPU for 256-
15500 input size.
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Figure 5.20: Covariance application execution time of CPU-GPU for 1-27
input size.

5.11 Covariance

Covariance Datamining application is executed on CPU and GPU with the dif-

ferent input size. In the Covariance experiment result, there are two types of

variations that have been seen 1) for small input size GPU performance is better

than CPU 2) but as input size increase CPU perform better than GPU. Figure

5.20 shows the execution time of CPU-GPU for Covariance application for small

input size figure 5.21 shows the execution time of CPU-GPU for Covariance ap-

plication for large input size. To examine why the program was always running

faster on the GPU for small input size and why the program was running faster

on CPU for large input size. To find out the reason for such variation analysis of

the host and kernel program of Covariance is done. There are three nested loops

in the Covariance host program and one dimension in the data. The analysis

demonstrates that the GPU execution was significantly fast for small input size

and CPU execution was fast for large input size because there is one loop unrolled

from each nested loop and data is portioned in one dimension. Much as in the

previous application result from ATAX CPU remain fast all the time because there

is no loop unrolled in its kernel function and data is portioned in one dimension.



Result and Analysis 52

Figure 5.21: Covariance application execution time of CPU-GPU for 512-2600
input size.

But in the Covariance application one-loop is unrolled from each nested loop but

the inner loop of each nested loop didn’t unroll that why this study indicates GPU

execution remains fast for small and but CPU execute Covariance kernel program

fastly than GPU when input size increase.

5.12 Correlation

Correlation Datamining application is executed on CPU and GPU with the dif-

ferent input size. In the Correlation experiment result, there are two types of

variations that have been seen 1) for small input size GPU performance is better

than CPU 2) but as input size increase CPU perform better than GPU. Figure

5.22 shows the execution time of CPU-GPU for Correlation application for small

input size figure 5.23 shows the execution time of CPU-GPU for Correlation ap-

plication for large input size. To examine why the program was always running

faster on the GPU for small input size and why the program was running faster

on CPU for large input size. To find out the reason for such variation analysis of

the host and kernel program of Correlation is done. There are four nested loops

in the Covariance host program and one dimension in the data. The analysis
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Figure 5.22: Correlation application execution time of CPU-GPU for 1-27
input size.

demonstrates that the GPU execution was significantly fast for small input size

and CPU execution was fast for large input size because there is one loop unrolled

from each nested loop and data is portioned in one dimension. Much as in the

previous application result from ATAX CPU remain fast all the time because there

is no loop unrolled in its kernel function and data is portioned in one dimension.

But in the Covariance application one-loop is unrolled from each nested loop but

the inner loop of each nested loop didn’t unroll that why this study indicates GPU

execution remains fast for small and but CPU execute Covariance kernel program

fastly than GPU when input size increase. After execution of MVT, BICG and

Covariance the results of all these applications are the same for example GPU ex-

ecution impressively fast for small input but as compared to CPU execution in the

same way CPU execution remains fast for large input size as compared to GPU.

after analyzing that OpenCL applications host and kernel programs two things

common in all application first one dimension in data second in host program of

each application there are nested loop in MVT two nested loops, BICG one nested

loops, Covariance three nested loop and Correlation application consists of four

nested loops. in the kernel program of these applications, one loop is unrolled

from each nested loop.
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Figure 5.23: Correlation application execution time of CPU-GPU for 128-
2800 input size.

5.13 Results Summary

In this work analysis of the different nature of OpenCL applications is done by

executing these OpenCL applications on different architecture to find out which

application is suitable for which architecture. Some applications like 2DCONV,

3DCONV and FDTD-2D are GPU suitable because when those applications were

run on CPU and GPU with different input sizes. GPU performance is always

better than CPU. To examine why these applications were running faster on the

GPU, see the host program and kernel program of 2DCONV, 3DCONV, and

FDTD. Those applications remain fast all the time because all loops are unrolled

in kernel function and data is portioned in two dimensions. On other hand, ATAX

is CPU suitable application because its execution is always fast on the CPU for

all input sizes as compared to GPU. To examine why these applications were

running faster on the CPU, see the host program and kernel program of ATAX.

This application remains fast all the time because no loop is unrolled in its kernel

function and data is portioned in two dimensions. There is also some application

like BICG, GESUMV, MVT, Covariance, and Correlation which executes fast
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on GPU for small input size but when input size increase CPU become fast as

compared to GPU. To examine why GPU perform better for small input size of

these applications and CPU perform better for when input size increase for this

see the host and kernel programs of these applications two things common in all

application first one dimension in data second in host program of each application

there are nested loop in MVT two nested loops, BICG one nested loops, Covariance

three nested loop and Correlation application consists of four nested loops. In the

kernel program of these applications, one loop is unrolled from each nested loop.

In the experiment result, there is some application like 2MM, 3MM and GEMM

which execute fast on GPU for small and large input size but some middle input

size CPU perform better than GPU. To examine this type of result this sees the

host and kernel programs of these applications. after analyzing that OpenCL

applications host and kernel programs two things common in all application first

two dimensions in data second in the host program of each application there are

nested loop in 2MM two nested loops, 3MM three nested loops and in GEMM one

nested loop and kernel program of these application two loops unrolled from each

nested loop.

Table 5.1: Critical Table of Result.

Application Dimension # loop unrolled in Result

in Data Kernel funtion/

nested loop

2DCONV 2 All loops unrolled

GPU performs better

than CPU for all input

size

3DCONV 2 All loops unrolled

GPU performs better

than CPU for all input

size

FDTD-2D 2 All loops unrolled

GPU performs better

than CPU for all input

size
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ATAX 1 NILL

CPU performs better

than GPU for all in-

put size

2MM 2 2

GPU perform better

for small and large

input size CPU per-

forms better for some

middle input size

3MM 2 2

GPU perform better

for small and large

input size CPU per-

forms better for some

middle input size

GEMM 2 2

GPU perform better

for small and large

input size CPU per-

forms better for some

middle input size

BICG 1 1

GPU perform better

for small input size

but CPU performs

better when input size

increase

GESUMMV 1 1

GPU perform better

for small input size

but CPU performs

better when input size

increase
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MVT 1 1

GPU perform better

for small input size

but CPU performs

better when input size

increase

Correlation 1 1

GPU perform better

for small input size

but CPU performs

better when input size

increase

Covariance 1 1

GPU perform better

for small input size

but CPU performs

better when input size

increase



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This work analyzes the performance of OpenCL applications by executing each

application on different architecture Intel i7-6700 and NVIDIA Geforce GT 740

architecture is used to find out which application GPU suitable and which one is

CPU suitable after executing applications on CPU-GPU then compare the result

of all applications and after that find out which software feature affecting the

performance and following questions is addressed.

Research questions were the following:

� which application execution is fast on GPU than CPU and which applications

execution is fast on GPU than CPU ?

� Which are the most important factors determining the execution time of

different OpenCL applications on GPU compared to the factors impacting

the execution time on the CPU?

The answer to the first question, the result of the experiment shows that there

are many OpenCL applications of pollybench suit which is suitable for GPU and
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some are suitable for CPU. For example, when execute 2DCONV, 3DCONV and

FDTD-2D on both architecture GPU performance is better than CPU for all input

size in the same way execution of ATAX application remain fast all the time on

CPU compare to GPU.

There is some application like 2MM, 3MM and GEMM which execute fast on GPU

for small and large input size but some middle input size CPU perform better than

GPU, in the same way, some application like BICG, GESUMV, MVT, Covariance,

and Correlation which executes fast on GPU for small input size but when input

size increase CPU become fast as compared to GPU.

The answer to the first question is, that the number of dimensions in data and

loop unrolling features affects the performance of an application when it executes

on CPU and GPU.

� If there are two dimensions in the host program and all loops are unrolled

in kernel program of OpenCL application so that type applications execute

fast on GPU as compare to CPU.i.e 2DCONV,3DCONV, and FDTD-2D.

� If there is one dimension in the host program and no loop is unrolled in

kernel program of OpenCL application so that type applications execute

fast on CPU as compare to GPU.i.e ATAX.

� If there are two dimensions in the host program and two loops are unrolled

from each nested loop in kernel program of OpenCL applications so that type

applications execute fast on GPU for small and large input size and execute

fast on CPU for some middle input size .i.e. 2MM, 3MM and GEMM.

Execution time of CPU for middle value (81-729). Those application for

some value (81-729) performance is better on CPU. It mean some other

feature also affecting the performnce that’s why future investigation needed.

� If there are one dimension in the host program and one loop is unrolled

from each nested loop in the kernel program of OpenCL applications so that

type applications execute fast on GPU for small input size but when input

size increase CPU perform better than GPU i.e BICG, GESUMMV, MVT,

Correlation and Covariance.
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6.2 Future Work

Future works within the same area would be to test more applications on CPU

and GPU, to obtain some kind of general classification of what kind of algorithms

are suitable for GPUs. Also test polybench suit on integrated GPU to find out

the performance of these OpenCL application on integrated GPU. Then you could

set up a classification for this specific GPU and draw conclusions about similarly

powerful integrated GPUs. A strong starting point could be the testing of the

AMD benchmark.
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Table A.1: CPU-GPU Execution Time

Benchmark Application Input Size CPU-Run-Time GPU-Run-Time
Convolution: 2DCONV 1 0.000182 0.000026
Convolution: 2DCONV 2 0.000189 0.000028
Convolution: 2DCONV 4 0.000123 0.000027
Convolution: 2DCONV 8 0.000092 0.000029
Convolution: 2DCONV 16 0.000089 0.000028
Convolution: 2DCONV 32 0.000972 0.000028
Convolution: 2DCONV 64 0.000215 0.000031
Convolution: 2DCONV 128 0.000296 0.000038
Convolution: 2DCONV 256 0.000349 0.000069
Convolution: 2DCONV 512 0.000701 0.000305
Convolution: 2DCONV 1024 0.002418 0.000816
Convolution: 2DCONV 2048 0.01027 0.002878
Convolution: 2DCONV 4096 0.040567 0.01156
Convolution: 2DCONV 8192 0.159683 0.044596
Convolution: 2DCONV 3 0.00019 0.00003
Convolution: 2DCONV 9 0.000906 0.00003
Convolution: 2DCONV 27 0.00019097 0.00003
Convolution: 2DCONV 81 0.0002391 0.000033
Convolution: 2DCONV 243 0.0003058 0.000071
Convolution: 2DCONV 729 0.00116801 0.000498
Convolution: 2DCONV 2187 0.011599 0.00346
Convolution: 2DCONV 6561 0.116789 0.030473
Convolution: 2DCONV 8500 0.192306 0.050473
Convolution: 2DCONV 9000 0.220476 0.055317
Convolution: 2DCONV 9500 0.237208 0.063071
Convolution: 2DCONV 10000 0.252689 0.066886
Convolution: 2DCONV 10500 0.288684 0.076927
Convolution: 2DCONV 11000 0.307197 0.08228
Convolution: 2DCONV 11500 0.339185 0.092343
Convolution: 2DCONV 12000 0.3728 0.09524
Convolution: 2DCONV 12500 0.398343 0.108873
Convolution: 2DCONV 13000 0.436943 0.114922
Convolution: 2DCONV 13500 0.455054 0.12688
Convolution: 2DCONV 14000 0.501917 0.130404
Convolution: 2DCONV 14500 1.172719 0.146193
Convolution: 2DCONV 15000 2.698431 0.15298
Convolution: 2DCONV 15500 20.103212 0.168965
Convolution: 3DCONV 8 0.000217 0.00004
Convolution: 3DCONV 16 0.000269 0.000068
Convolution: 3DCONV 32 0.00048 0.000157
Convolution: 3DCONV 64 0.001308 0.000708
Convolution: 3DCONV 128 0.0006279 0.002052
Convolution: 3DCONV 256 0.042658 0.014073
Convolution: 3DCONV 512 0.334873 0.111196
Convolution: 3DCONV 27 0.000391 0.000121
Convolution: 3DCONV 81 0.002154 0.000741
Convolution: 3DCONV 243 0.036858 0.012211
Convolution: 3DCONV 550 0.427389 0.146884
Convolution: 3DCONV 580 0.5071 0.170609
Convolution: 3DCONV 600 0.573949 0.182079
Convolution: 3DCONV 610 0.777658 0.199798
Convolution: 3DCONV 620 0.779186 0.206137
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Convolution: 3DCONV 600 0.573949 0.182079
Convolution: 3DCONV 610 0.777658 0.199798
Convolution: 3DCONV 620 0.779186 0.206137
Linear Algebra 2MM 1 0.000105 0.000026
Linear Algebra 2MM 2 0.000121 0.000027
Linear Algebra 2MM 4 0.000149 0.000027
Linear Algebra 2MM 8 0.000247 0.000039
Linear Algebra 2MM 16 0.000196 0.000034
Linear Algebra 2MM 32 0.000189 0.000041
Linear Algebra 2MM 64 0.000241 0.000079
Linear Algebra 2MM 128 0.000773 0.00041
Linear Algebra 2MM 256 0.001149 0.003325
Linear Algebra 2MM 512 0.014797 0.028786
Linear Algebra 2MM 1024 0.238547 0.225124
Linear Algebra 2MM 2048 5.824906 1.8382
Linear Algebra 2MM 4096 91.840692 14.489396
Linear Algebra 2MM 3 0.000113 0.000028
Linear Algebra 2MM 9 0.00182 0.00003
Linear Algebra 2MM 27 0.0002028 0.000042
Linear Algebra 2MM 81 0.000287 0.000222
Linear Algebra 2MM 243 0.0011079 0.004299
Linear Algebra 2MM 729 0.0313191 0.110288
Linear Algebra 2MM 2187 2.64732 2.944499
Linear Algebra 3MM 1 0.000231 0.000137
Linear Algebra 3MM 2 0.000256 0.000134
Linear Algebra 3MM 4 0.000191 0.000169
Linear Algebra 3MM 8 0.00026 0.000134
Linear Algebra 3MM 16 0.000258 0.000039
Linear Algebra 3MM 32 0.000223 0.00007
Linear Algebra 3MM 64 0.000279 0.000149
Linear Algebra 3MM 128 0.00046 0.000658
Linear Algebra 3MM 256 0.001774 0.007918
Linear Algebra 3MM 512 0.021494 0.042176
Linear Algebra 3MM 1024 0.362389 0.337826
Linear Algebra 3MM 2048 7.572493 2.757657
Linear Algebra 3MM 4096 137.119246 8.756636
Linear Algebra 3MM 3 0.000256 0.000037
Linear Algebra 3MM 9 0.00027 0.000036
Linear Algebra 3MM 27 0.000221 0.000055
Linear Algebra 3MM 81 0.000312 0.00035
Linear Algebra 3MM 243 0.001686 0.006427
Linear Algebra 3MM 729 0.048758 0.165286
Linear Algebra 3MM 2187 3.973749 4.416818
Linear Algebra 3MM 2500 6.084055 6.329312
Linear Algebra 3MM 2700 7.825406 7.945314
Linear Algebra 3MM 3000 10.681407 10.343447
Linear Algebra 3MM 3500 21.060085 17.285947
Linear Algebra 3MM 3700 27.016805 10.333313
Linear Algebra 3MM 4000 26.732305 12.023552
Linear Algebra Atax 1 0.000111 0.000137
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Linear Algebra Atax 2 0.000221 0.000134
Linear Algebra Atax 4 0.0001 0.000169
Linear Algebra Atax 8 0.000124 0.000134
Linear Algebra Atax 16 0.000107 0.000039
Linear Algebra Atax 32 0.000097 0.00007
Linear Algebra Atax 64 0.000118 0.000149
Linear Algebra Atax 128 0.000115 0.000658
Linear Algebra Atax 256 0.000176 0.007918
Linear Algebra Atax 512 0.000298 0.042176
Linear Algebra Atax 1024 0.000763 0.337826
Linear Algebra Atax 2048 0.004135 2.757657
Linear Algebra Atax 4096 0.018337 8.756636
Linear Algebra Atax 3 0.000094 0.000037
Linear Algebra Atax 9 0.000114 0.000036
Linear Algebra Atax 27 0.000198 0.000055
Linear Algebra Atax 81 0.00012 0.00035
Linear Algebra Atax 243 0.000175 0.006427
Linear Algebra Atax 729 0.000457 0.165286
Linear Algebra Atax 2187 0.003748 4.416818
Linear Algebra Atax 6561 0.050802 11.125473
Linear Algebra Atax 9000 0.070925 6.329312
Linear Algebra Atax 9500 0.102996 7.945314
Linear Algebra Atax 10000 0.103657 10.343447
Linear Algebra Atax 10500 0.135692 17.285947
Linear Algebra Atax 11000 0.120393 10.333313
Linear Algebra Atax 11500 0.175205 12.023552
Linear Algebra BICG 1 0.000056 0.000038
Linear Algebra BICG 2 0.000086 0.000039
Linear Algebra BICG 4 0.000059 0.000039
Linear Algebra BICG 8 0.000062 0.000042
Linear Algebra BICG 16 0.000079 0.000049
Linear Algebra BICG 32 0.000075 0.000079
Linear Algebra BICG 64 0.000092 0.000118
Linear Algebra BICG 128 0.000054 0.000202
Linear Algebra BICG 256 0.000143 0.000388
Linear Algebra BICG 512 0.000237 0.000765
Linear Algebra BICG 1024 0.000788 0.001657
Linear Algebra BICG 2048 0.004115 0.007129
Linear Algebra BICG 4096 0.017699 0.034627
Linear Algebra BICG 8192 0.071557 0.143663
Linear Algebra BICG 3 0.000068 0.000039
Linear Algebra BICG 9 0.000073 0.000043
Linear Algebra BICG 27 0.00008 0.000066
Linear Algebra BICG 81 0.000074 0.000143
Linear Algebra BICG 243 0.000134 0.000358
Linear Algebra BICG 729 0.000383 0.0012
Linear Algebra BICG 2187 0.003682 0.008378
Linear Algebra BICG 6561 0.050631 0.085715
Linear Algebra BICG 9000 0.073766 0.176264
Linear Algebra BICG 9500 0.108158 0.195892
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Linear Algebra BICG 10000 0.103786 0.221009
Linear Algebra BICG 10500 0.134935 0.229253
Linear Algebra BICG 11000 0.119226 0.250893
Linear Algebra BICG 11500 0.168973 0.27923
Linear Algebra BICG 12000 0.158881 0.304955
Linear Algebra BICG 12500 0.207425 0.343368
Linear Algebra BICG 13000 0.191958 0.363237
Linear Algebra BICG 13500 0.253128 0.397921
Linear Algebra BICG 14000 0.243223 0.429866
Linear Algebra BICG 14500 0.294599 0.442492
Linear Algebra BICG 15000 0.273251 0.470395
Linear Algebra BICG 15500 0.333892 0.505108
Linear Algebra Gemm 1 0.000046 0.000024
Linear Algebra Gemm 2 0.000037 0.000025
Linear Algebra Gemm 4 0.000052 0.000025
Linear Algebra Gemm 8 0.000038 0.000025
Linear Algebra Gemm 16 0.000062 0.000029
Linear Algebra Gemm 32 0.000069 0.000031
Linear Algebra Gemm 64 0.000152 0.000052
Linear Algebra Gemm 128 0.000181 0.000214
Linear Algebra Gemm 256 0.000686 0.001713
Linear Algebra Gemm 512 0.007078 0.014248
Linear Algebra Gemm 1024 0.120715 0.114008
Linear Algebra Gemm 2048 2.693363 0.927407
Linear Algebra Gemm 4096 42.031056 7.326181
Linear Algebra Gemm 8192 456.837723 25.070733
Linear Algebra Gemm 3 0.000037 0.000024
Linear Algebra Gemm 9 0.000041 0.000026
Linear Algebra Gemm 27 0.000047 0.000033
Linear Algebra Gemm 81 0.000132 0.000128
Linear Algebra Gemm 243 0.000591 0.002187
Linear Algebra Gemm 729 0.016496 0.055592
Linear Algebra Gemm 2187 1.326202 1.490213
Linear Algebra Gemm 6561 204.251776 9.421209
Linear Algebra Gemm 8500 482.773177 25.143003
Linear Algebra Gesummv 1 0.000059 0.000026
Linear Algebra Gesummv 2 0.000039 0.000025
Linear Algebra Gesummv 4 0.000041 0.000026
Linear Algebra Gesummv 8 0.000043 0.000028
Linear Algebra Gesummv 16 0.000038 0.000036
Linear Algebra Gesummv 32 0.000069 0.000091
Linear Algebra Gesummv 64 0.000045 0.000159
Linear Algebra Gesummv 128 0.000079 0.000297
Linear Algebra Gesummv 256 0.000552 0.000579
Linear Algebra Gesummv 512 0.000245 0.001187
Linear Algebra Gesummv 1024 0.000834 0.003303
Linear Algebra Gesummv 2048 0.002636 0.015501
Linear Algebra Gesummv 4096 0.010898 0.068479
Linear Algebra Gesummv 8192 0.043417 0.279759
Linear Algebra Gesummv 3 0.000044 0.000025
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Linear Algebra Gesummv 9 0.00004 0.000029
Linear Algebra Gesummv 27 0.000074 0.000066
Linear Algebra Gesummv 81 0.000073 0.000194
Linear Algebra Gesummv 243 0.000107 0.000564
Linear Algebra Gesummv 729 0.000432 0.001877
Linear Algebra Gesummv 2187 0.003127 0.019049
Linear Algebra Gesummv 6561 0.028596 0.17571
Linear Algebra Gesummv 8500 0.048667 0.299259
Linear Algebra Gesummv 9000 0.054379 0.337371
Linear Algebra Gesummv 9500 0.057835 0.363864
Linear Algebra Gesummv 10000 0.067241 0.419504
Linear Algebra Gesummv 10500 0.070705 0.455109
Linear Algebra Gesummv 11000 0.079535 0.498202
Linear Algebra Gesummv 11500 0.083427 0.542799
Linear Algebra Gesummv 12000 0.09934 0.596713
Linear Algebra Gesummv 12500 0.10158 0.650584
Linear Algebra Gesummv 13000 0.112641 0.694818
Linear Algebra Gesummv 13500 0.117648 0.765832
Linear Algebra Gesummv 14000 0.132437 0.828024
Linear Algebra Gesummv 14500 0.134861 0.864967
Linear Algebra Gesummv 15000 0.294369 0.933314
Linear Algebra Gesummv 15000 0.357517 0.989695
Linear Algebra MVT 1 0.000041 0.000026
Linear Algebra MVT 2 0.000042 0.000027
Linear Algebra MVT 4 0.000045 0.000029
Linear Algebra MVT 8 0.000046 0.000031
Linear Algebra MVT 16 0.000046 0.000048
Linear Algebra MVT 32 0.000047 0.000071
Linear Algebra MVT 64 0.000051 0.000116
Linear Algebra MVT 128 0.000055 0.000205
Linear Algebra MVT 256 0.000144 0.00043
Linear Algebra MVT 512 0.000391 0.000847
Linear Algebra MVT 1024 0.001526 0.001924
Linear Algebra MVT 2048 0.006108 0.008164
Linear Algebra MVT 4096 0.024259 0.037905
Linear Algebra MVT 8192 0.103468 0.155138
Linear Algebra MVT 3 0.000046 0.000029
Linear Algebra MVT 9 0.000057 0.000031
Linear Algebra MVT 27 0.000068 0.00006
Linear Algebra MVT 81 0.000076 0.000165
Linear Algebra MVT 243 0.000143 0.000429
Linear Algebra MVT 729 0.000699 0.00132
Linear Algebra MVT 2187 0.007191 0.009635
Linear Algebra MVT 6561 0.094506 0.093204
Linear Algebra MVT 8500 0.148368 0.169061
Linear Algebra MVT 9000 0.139123 0.187617
Linear Algebra MVT 9500 0.186788 0.210559
Linear Algebra MVT 10000 0.177559 0.230276
Linear Algebra MVT 10500 0.238171 0.244849
Linear Algebra MVT 11000 0.216483 0.269188
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Data mining Correlation 1 0.000071 0.000046
Data mining Correlation 2 0.000092 0.000049
Data mining Correlation 4 0.000094 0.000043
Data mining Correlation 8 0.00009 0.00006
Data mining Correlation 16 0.000069 0.000137
Data mining Correlation 32 0.0000103 0.000751
Data mining Correlation 64 0.000262 0.003764
Data mining Correlation 128 0.001179 0.32531
Data mining Correlation 256 0.009103 0.074786
Data mining Correlation 512 0.067057 0.32531
Data mining Correlation 1024 0.521597 1.389249
Data mining Correlation 2048 8.775795 9.383656
Data mining Correlation 3 0.000087 0.000051
Data mining Correlation 9 0.000085 0.000065
Data mining Correlation 27 0.000974 0.000475
Data mining Correlation 81 0.000416 0.006343
Data mining Correlation 243 0.007378 0.066169
Data mining Correlation 729 0.133603 0.68484
Data mining Correlation 2187 13.618366 7.590744
Data mining Correlation 2000 8.134508 8.984424
Data mining Correlation 2500 19.25735 9.407149
Data mining Correlation 3000 27.800201 10.662702
Data mining Correlation 3500 52.399901 11.404163
Data mining Correlation 4000 106.146994 10.22719
Data mining Correlation 4500 162.325073 25.414885
Data mining Covariance 1 0.000082 0.000032
Data mining Covariance 2 0.000092 0.000033
Data mining Covariance 4 0.000094 0.000034
Data mining Covariance 8 0.00009 0.000049
Data mining Covariance 16 0.000069 0.000128
Data mining Covariance 32 0.0000103 0.000751
Data mining Covariance 64 0.000262 0.003762
Data mining Covariance 128 0.001179 0.016578
Data mining Covariance 256 0.009103 0.074877
Data mining Covariance 512 0.067057 0.326137
Data mining Covariance 1024 0.521597 1.377272
Data mining Covariance 2048 8.775795 9.396772
Data mining Covariance 3 0.000087 0.000032
Data mining Covariance 9 0.000085 0.000053
Data mining Covariance 27 0.000974 0.00046
Data mining Covariance 81 0.000416 0.006278
Data mining Covariance 243 0.007378 0.065267
Data mining Covariance 729 0.133603 0.685455
Data mining Covariance 2187 13.618366 9.143673
Data mining Covariance 2000 8.134508 8.958877
Data mining Covariance 2500 19.25735 19.125275
Data mining Covariance 3000 27.800201 10.084549
Data mining Covariance 3500 52.399901 10.20873
Data mining Covariance 4000 106.146994 11.120783
Data mining Covariance 4500 162.325073 9.870089
Data mining Covariance 5000 277.80133 11.814984
Data mining Covariance 5500 386.431369 7.425238
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